This code snippet processes the columns of a `Polars` DataFrame...
This code snippet processes the columns of a Polars
DataFrame (df2
) and updates the values of its columns based on a specific condition. Let's break it down:
-
Iterate through columns:
for column in df2.iter_columns()
This loop iterates over all the column names in the
df2
DataFrame (usingiter_columns()
or an equivalent method to get the columns). -
Apply transformation on each column:
df2 = df2.with_columns( pl.when(df2.col(column).is_not_null() & (pl.col(column) == datetonull)) .then(pl.lit(None)) .otherwise(pl.col(column)) .alias(column) )
- This transformation is applied for each column:
-
It checks the condition:
df2.col(column).is_not_null() & (pl.col(column) == datetonull)
The condition ensures:
- The column value is not null (
is_not_null()
). - The column value is equal to a specific value
datetonull
.
- The column value is not null (
-
If the condition is
True
:.then(pl.lit(None))
Replace the column value with
None
. -
Otherwise (
False
):.otherwise(pl.col(column))
Keep the original value of the column.
-
The
alias(column)
ensures the transformation happens in the same column.
-
- This transformation is applied for each column:
-
Update the DataFrame: The
.with_columns()
method replaces the specified column(s) indf2
with the newly computed column that adheres to the changes described above.
In summary:
This code loops over all columns in the Polars DataFrame df2
and replaces any values in each column that are equal to datetonull
and are not null, with None
. Other values remain unchanged. The transformed DataFrame overwrites the original df2
.