This code defines a function `clean_data` that performs data cleaning...

March 16, 2025 at 03:14 AM

def clean_data(frame): df = frame.copy() df.replace(['None', 'N/A', '?', 'n/a'], numpy.nan, inplace=True) def cleanup_nums(cell): if pandas.isna(cell): return numpy.nan if isinstance(cell, str): cleaned = re.sub(r'[^\d\.\-]', '', cell) try: return float(cleaned) except ValueError: return numpy.nan return cell mixed_cols = ['col_00', 'col_04'] pure_num_cols = ['label', 'col_01', 'col_05', 'col_06', 'col_07', 'col_08', 'col_09', 'col_10'] num_cols = mixed_cols + pure_num_cols for col in num_cols: df[col] = df[col].apply(cleanup_nums) text_cols = ['col_02', 'col_03', 'col_11'] for col in text_cols: df[col] = df[col].astype(str).str.lower().str.strip() return df unique_data = clean_data(unique_data) unique_data

This code defines a function clean_data that performs data cleaning on a given dataframe frame. Here's the breakdown of what the function does:

1. Copy the original dataframe:

  • df = frame.copy() creates a copy of the input dataframe frame to ensure no modifications are made to the original dataframe.

2. Replace specified placeholders for missing data:

  • df.replace(['None', 'N/A', '?', 'n/a'], numpy.nan, inplace=True) replaces certain placeholders for missing values ('None', 'N/A', '?', 'n/a') in the dataframe with numpy.nan.

3. Define cleanup_nums function for numeric cleaning:

This nested function processes each cell in specified numeric-like columns:

  • If the cell is NaN, it returns a numpy.nan.
  • If the cell is a string, it removes all non-numeric characters (excluding . and -) using a regular expression and attempts to convert the cleaned string to a float.
  • If the conversion fails, it returns numpy.nan.
  • If the cell is already numeric, it remains unchanged.

4. Apply numeric cleaning:

  • mixed_cols (e.g., ['col_00', 'col_04']) contains columns that may include mixed string and numeric content.
  • pure_num_cols (e.g., ['label', 'col_01', 'col_05', ..., 'col_10']) includes columns expected to hold only numeric values.
  • num_cols is a combined list of all columns to be treated as numeric.
  • The cleanup_nums function is applied to all these columns to process and clean numeric values:
    for col in num_cols:
        df[col] = df[col].apply(cleanup_nums)
    

5. Apply text cleaning:

  • text_cols (e.g., ['col_02', 'col_03', 'col_11']) identifies columns that are treated as text/string.
  • These columns are converted to lowercase, stripped of leading/trailing spaces, and forced to be string type using:
    for col in text_cols:
        df[col] = df[col].astype(str).str.lower().str.strip()
    

6. Return the cleaned dataframe:

  • The cleaned copy of the dataframe (df) is returned at the end of the function.

Final Usage:

  • The function is called on unique_data to clean it, and the result replaces the original unique_data variable with the cleaned version.

Summary:

This code:

  • Cleans numeric and text data in specific dataframe columns.
  • Converts placeholders for missing values into numpy.nan.
  • Handles mixed columns (both text and numeric).
  • Applies transformations like lowercasing and trimming spaces to textual columns.
  • Outputs a cleaned dataframe that is ready for further analysis or processing.
Generate your own explanations
Download our vscode extension
Read other generated explanations

Built by @thebuilderjr
Sponsored by beam analytics
Read our terms and privacy policy
Forked from openai-quickstart-node