This code defines a React functional component, `MarketMachinesHome`, that renders...

June 28, 2025 at 04:37 AM

import { Card, CardContent } from "@/components/ui/card"; import { Button } from "@/components/ui/button"; import { Progress } from "@/components/ui/progress"; import { Badge } from "@/components/ui/badge"; import { LineChart, Line, XAxis, YAxis, Tooltip, ResponsiveContainer } from "recharts"; const mockData = [ { date: "Jan", ai: 102, hold: 100 }, { date: "Feb", ai: 106, hold: 101 }, { date: "Mar", ai: 110, hold: 103 }, { date: "Apr", ai: 115, hold: 105 }, { date: "May", ai: 120, hold: 107 }, { date: "Jun", ai: 123, hold: 108 }, ]; export default function MarketMachinesHome() { return ( <div className="grid gap-6 p-6 max-w-4xl mx-auto"> {/* Header */} <div className="text-center space-y-2"> <h1 className="text-3xl font-bold">Market Machines</h1> <p className="text-muted-foreground"> Your AI-powered trading co-pilot. Not a broker. Just sharp signals. </p> </div> {/* Watchlist */} <div className="grid gap-4 md:grid-cols-3"> {["AAPL", "AMD", "NVDA"].map((stock) => ( <Card key={stock} className="shadow-md"> <CardContent className="p-4 space-y-2"> <div className="flex justify-between items-center"> <h2 className="text-xl font-semibold">{stock}</h2> <Badge variant="destructive">SELL</Badge> </div> <p className="text-sm text-muted-foreground"> Expected move: -3.1% | Target: $194.73 </p> <Progress value={57} /> <p className="text-xs text-muted-foreground">AI Confidence: 57%</p> <Button variant="outline" className="w-full text-xs"> See Why </Button> </CardContent> </Card> ))} </div> {/* Backtest Summary */} <Card className="shadow-md"> <CardContent className="p-4 space-y-4"> <h2 className="text-xl font-semibold">Backtest Results</h2> <div className="grid grid-cols-2 gap-4 text-sm"> <div> <p className="font-semibold">Win Rate</p> <p>100% (2 of 2 trades)</p> </div> <div> <p className="font-semibold">Outperformed SPY</p> <p>+18.3%</p> </div> <div> <p className="font-semibold">Max Drawdown</p> <p>-13.7%</p> </div> <div> <p className="font-semibold">Sharpe Ratio</p> <p>1.60</p> </div> </div> <div className="h-48"> <ResponsiveContainer width="100%" height="100%"> <LineChart data={mockData}> <XAxis dataKey="date" /> <YAxis domain={[95, 130]} /> <Tooltip /> <Line type="monotone" dataKey="ai" stroke="#8884d8" name="AI Strategy" /> <Line type="monotone" dataKey="hold" stroke="#82ca9d" name="Buy & Hold" /> </LineChart> </ResponsiveContainer> </div> </CardContent> </Card> </div> ); }

This code defines a React functional component, MarketMachinesHome, that renders a user interface for an AI-powered trading dashboard. Here's what the code does:

  1. Imports: It imports various UI components (Card, Button, Badge, etc.) and charting components (LineChart, Line, XAxis, etc.) from libraries (including @/components/ui), and mock data for the chart is provided in the mockData array.

  2. Layout and Styling: The UI layout is styled using utility classes (likely from Tailwind CSS), and organizes the content into grids and sections for responsiveness and readability.

  3. Interface Sections:

    • Header: Displays the main app title "Market Machines" and a description about the app.
    • Watchlist:
      • Iterates over an array of stock symbols (["AAPL", "AMD", "NVDA"]) and displays a Card for each stock.
      • Each card includes:
        • Stock symbol as the title.
        • A Badge marked with SELL (hard-coded for all stocks).
        • Text describing expected stock move and target price.
        • A progress bar and percentage (AI confidence set to 57% for all).
        • A button labeled "See Why".
    • Backtest Summary:
      • Displays summary metrics from backtest performance metrics such as "Win Rate", "Outperformed SPY", "Max Drawdown", and "Sharpe Ratio".
      • Displays a chart (created using recharts) comparing "AI Strategy" with "Buy & Hold" (data from mockData):
        • X-axis (date) represents time (months).
        • Y-axis shows the range of performance metrics (ai and hold).
        • Two lines are plotted, one for each strategy's performance.
  4. Chart: The LineChart component visualizes both the ai strategy performance and the hold strategy from the mockData.

  5. Reusability: The component uses modular, reusable patterns for elements like Card and Badge, making it extendable for additional stocks or data.

  6. Export: The component is exported as the default export (MarketMachinesHome), allowing it to be imported and used in other parts of the application.

Overall, this code creates a visually appealing and informative trading dashboard showing AI-based trading signals, performance summaries, and backtesting results.

Generate your own explanations
Download our vscode extension
Read other generated explanations

Built by @thebuilderjr
Sponsored by beam analytics
Read our terms and privacy policy
Forked from openai-quickstart-node