This code is a C program that calculates a "special...

August 26, 2025 at 08:44 AM

#include <stdio.h> #define NMAX 30 int input(int *array, int *n); double mean(int *array, int n); double standard_deviation(int *array, int n, double mean_v); int find_special_number(int *array, int n, double mean_v, double std_dev); int main() { int n, data[NMAX]; if (input(data, &n) != 1) { printf("n/a\n"); return 0; } double mean_v = mean(data, n); double std_dev = standard_deviation(data, n, mean_v); int result = find_special_number(data, n, mean_v, std_dev); printf("%d\n", result); return 0; } int input(int *array, int *n) { if (scanf("%d", n) != 1 || *n <= 0 || *n > NMAX) { return 0; } for (int i = 0; i < *n; i++) { if (scanf("%d", &array[i]) != 1) { return 0; } } return 1; } double mean(int *array, int n) { double sum = 0.0; for (int i = 0; i < n; i++) { sum += array[i]; } return sum / n; } double standard_deviation(int *array, int n, double mean_v) { double sum = 0.0; for (int i = 0; i < n; i++) { sum += (array[i] - mean_v) * (array[i] - mean_v); } return sqrt(sum / n); } int find_special_number(int *array, int n, double mean_v, double std_dev) { double lower_bound = mean_v - 3 * std_dev; double upper_bound = mean_v + 3 * std_dev; for (int i = 0; i < n; i++) { if (array[i] >= mean_v && array[i] % 2 == 0 && array[i] != 0 && array[i] >= lower_bound && array[i] <= upper_bound) { return array[i]; } } return 0; // В случае если нет нужного число }

This code is a C program that calculates a "special number" from an array of integers. Here's a step-by-step explanation of its function:

Overview of Functionality

  1. Input Reading:

    • The program reads a number n (size of the array) and then n integers into an array.
    • The input size n must be between 1 and NMAX (maximum size of 30). Any invalid input returns n/a and terminates the program.
  2. Mean Calculation:

    • The program calculates the arithmetic mean (average) of the elements in the array.
  3. Standard Deviation Calculation:

    • Using the calculated mean, it computes the standard deviation of the array elements.
  4. Finding the "Special Number":

    • The program goes through the array and finds the first number that satisfies all these conditions:

      • Greater than or equal to the mean.
      • Even (divisible by 2).
      • Non-zero.
      • Within the range defined by mean - 3 * std_dev and mean + 3 * std_dev.
    • If no number satisfies these conditions, it returns 0.

  5. Output:

    • The result (either the special number or 0 if no such number exists) is printed to the standard output.

Detailed Breakdown of the Code:

  1. input Function:

    • Reads inputs into the array array and size n.
    • Validates that n is positive and does not exceed NMAX.
    • If any input is invalid (e.g., non-integer or out-of-range values), the function returns 0.
  2. mean Function:

    • Computes the arithmetic mean of the elements in the array: [ \text{mean} = \frac{\text{Sum of all elements in the array}}{n} ]
  3. standard_deviation Function:

    • Computes the standard deviation of the array using the formula: [ \text{standard_deviation} = \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} (\text{array}[i] - \text{mean})^2} ]
  4. find_special_number Function:

    • Constructs a valid range:
      • Lower bound: mean - 3 * standard deviation.
      • Upper bound: mean + 3 * standard deviation.
    • Iterates through the array and returns the first number that:
      • Is greater than or equal to the mean (array[i] >= mean_v).
      • Is even (array[i] % 2 == 0).
      • Is non-zero (array[i] != 0).
      • Lies within the bounds (lower_bound <= array[i] <= upper_bound).
    • If no such number exists, returns 0.
  5. main Function:

    • Runs all the above steps. If the input is invalid, terminates with output n/a.
    • Otherwise, calculates the mean and standard deviation to find and print the "special number."

Example Execution:

Consider the following input:

5
1 2 3 4 5

Steps:

  1. The input size is n = 5. The array is [1, 2, 3, 4, 5].
  2. Mean Calculation:
    • Mean = ( \frac{1 + 2 + 3 + 4 + 5}{5} = 3.0 ).
  3. Standard Deviation Calculation:
    • Variance = ( \frac{(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2}{5} = 2.0 ).
    • Standard Deviation = ( \sqrt{2.0} \approx 1.414 ).
  4. Range:
    • Lower bound = ( 3.0 - 3 \cdot 1.414 = -1.242 ).
    • Upper bound = ( 3.0 + 3 \cdot 1.414 = 7.242 ).
  5. Find Special Number:
    • The first even number in the array, greater than or equal to the mean, and within the bounds is 4.
  6. Output:
    • The program prints: 4.

Edge Cases:

  1. No Valid Inputs: If no number in the array satisfies the conditions:

    • Example: Input array [-1, 1, 3, 7].
    • The program will return 0.
  2. Invalid Input:

    • Example: Input n = -5 or non-integer values.
    • The program will print n/a.
  3. All Numbers Are Zero:

    • If the array is [0, 0, 0], the program will print 0, as none of the numbers are non-zero.
Generate your own explanations
Download our vscode extension
Read other generated explanations

Built by @thebuilderjr
Sponsored by beam analytics
Read our terms and privacy policy
Forked from openai-quickstart-node