The provided code snippet modifies the `transform_data.dataframe` by adding or...
The provided code snippet modifies the transform_data.dataframe
by adding or updating a column called "Calendar_Month_Key"
. Here's a step-by-step explanation of what this code does:
-
Access the current DataFrame: The code operates on
transform_data.dataframe
. -
Use the
withColumn
method: The.withColumn()
function adds a new column or replaces an existing column with the same name in the DataFrame. In this case, the column being added or updated is"Calendar_Month_Key"
. -
Concatenation of strings with
f.concat()
: The new column"Calendar_Month_Key"
is generated by concatenating:- The value in the
"Calendar_Year"
column. - A modified version of the
"Calendar_Month"
column.
- The value in the
-
Process
"Calendar_Month"
for leading zeros:- If the length of the
"Calendar_Month"
value is equal to 1 (e.g.,'1'
,'2'
), it is left-padded with a'0'
to make it two characters long (e.g., becomes'01'
,'02'
). - This is done using
f.lpad("Calendar_Month", 2, "0")
. - If the length of
"Calendar_Month"
is not 1, the original value of"Calendar_Month"
is used without modification (viaf.otherwise(f.col("Calendar_Month"))
).
- If the length of the
-
Update or create the
"Calendar_Month_Key"
column: The"Calendar_Month_Key"
column is constructed by combining:"Calendar_Year"
(e.g.,'2023'
) and- The padded
"Calendar_Month"
value (e.g.,'01'
for January).
-
Result: The
"Calendar_Month_Key"
column effectively serves as a unique key for the year and month in the formatYYYYMM
. For example:- If
"Calendar_Year"
is2023
and"Calendar_Month"
is1
,"Calendar_Month_Key"
will be202301
. - If
"Calendar_Year"
is2023
and"Calendar_Month"
is12
,"Calendar_Month_Key"
will be202312
.
- If
Summary
This code creates or updates a column "Calendar_Month_Key"
in the form YYYYMM
, where YYYY
comes from "Calendar_Year"
and MM
is the zero-padded month derived from "Calendar_Month"
.